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Abstract. We present an analytical evaluation of radiative corrections in exotic atoms induced by the one–
loop electronic vacuum polarization. We evaluate corrections to the energy levels, to the wave function (at
the origin) and to the hyperfine structure. We treat all corrections analytically within a non-relativistic
approximation. Agreement is found with a few available numerical results. The analytical treatment allows
to determine the asymptotic forms of the corrections in the limit of a small atomic radius, which for the
atomic systems considered corresponds to a large mass of the constituent particle as compared to the
electron mass. The asymptotics can be verified using the effective charge approach.

PACS. 12.20.Ds Specific calculations – 31.30.Jv Relativistic and quantum electrodynamic effects in atoms
and molecules – 36.10.Dr Positronium, muonium, muonic atoms and molecules

1 Introduction

Exotic atoms, whose constituent particles are heavier than
the electron, share characteristics with both weakly bound
hydrogen–like atoms and high–Z electronic systems. For
low charge the exotic bound systems are non-relativistic
(like weakly bound systems), because the characteristic
atomic momentum is of the order of αmR (where mR is
the reduced mass of the system). By contrast, the atomic
radius of exotic atoms is small and comparable to that
of strongly bound electronic systems. In muonic hydro-
gen, e.g., the Bohr atomic radius is equal to 1/(αmµ) (ig-
noring reduced mass corrections). This radius is roughly
207 times smaller than the atomic radius of hydrogen and
smaller than the radius of typical strongly bound elec-
tronic systems (e.g. hydrogen–like uranium). Because of
this small length scale, the correction to almost all atomic
quantities of interest in exotic systems caused by the
free electronic vacuum polarization is significant in the
muonic atoms and exotic system, but it can be neglected
in “usual” electronic atoms at low Z in the next-to-leading
order. In this paper we derive analytical expressions for
three corrections,
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– as a starting point the energy shift ∆E of low-lying
atomic levels induced by the Uehling potential (the
dominant radiative correction to the energy),

– the correction ∆EF to the hyperfine structure by a
vacuum polarization insertion in the transverse photon
line (transverse hyperfine structure correction),

– the correction to the value of the wave function at the
origin ∆ψ(0) (wave function correction).

The analytical expressions are evaluated for pionium
(π+π−-atom), dimuonium (bound µ+µ−–system) and for
the hypothetical tauonium particle (τ+τ−–atom). We
work in this article within a non relativistic approxima-
tion.

Of particular importance for the physical properties of
exotic atoms is the correction to the wave function at the
origin ∆ψ(0). It should be noted that the wave function
correction contributes, like the transverse correction and
other contributions, to the hyperfine structure. However,
the meaning of the wave function correction is rather uni-
versal. The Fermi energy, the finite nuclear size correction
to the energy levels, the decay rate of pionium to neutral
pions and the annihilation decay rate of dimuonium are all
proportional to the square of the wave function at the ori-
gin, |ψ(0)|2. In first approximation, the value of the wave
function at the origin is |ψ(0)|2 = (Z αmR)3/(π n3) δl,0
and vanishes for P states and for states of higher an-
gular momenta. A radiative correction to the value of
ψ(0), which will be considered only for S states in this
paper for obvious reasons, causes a modification of all
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quantities which are proportional to it. E.g., the decay
rate is modified according to[

∆Γ

Γ

]
ψ

= 2
∆ψnS(0)

ψnS(0)
· (1)

The wave function correction due to the electronic vac-
uum polarization in exotic atoms is of relative order α/π
and therefore larger than any relativistic corrections. The
correction is in first approximation spin–independent and
universal to all heavy exotic atoms consisting of bosons
and/or fermions. In reference [4] we evaluate the wave
function correction numerically, but we restrict the discus-
sion to dimuonium and we do not discuss the asymptotical
behaviour. In this paper, we report results for pionium and
tauonium and present a detailed discussion of the asymp-
totical behaviour of the wave function correction, which
illustrates its physical origin.

The relative order–of–magnitude of the wave function
correction for exotic atoms (α/π) can be derived as fol-
lows. For light electronic systems, the dominant correc-
tion to the wave function is of relative order (α/π) (Z α)2

at distances of the order of 1/(ZαmR) and of relative or-
der (α/π)(Zα) at smaller distances of the order 1/mR.
By contrast, for heavier systems, the two factors of (Z α)
are compensated by the smaller length scale of the heavy
atom as compared to the Compton wavelength of the elec-
tron, and the correction enters at the level of α/π. It turns
out that virtual free intermediate states of momentum of
the order of the electronic mass yield the most significant
contribution to the wave function correction.

We would like to conclude this Introduction with a
brief discussion of the possible experimental realizations
of pionium and dimuonium. The dimuonic system could be
produced in heavy–ion collisions and in electron–positron
colliders. The possibility of production of this particle in
heavy–ion collisions at RHIC and LHC energies and lu-
minosities has been estimated with promising results [1].
Pionium has been observed recently in a remarkable ex-
periment [2]. Radiative corrections to its decay are studied
in reference [3].

2 Energy correction

The one–loop vacuum polarization correction to the pho-
ton propagator can be represented as a replacement of the
form

1

q2 + i ε
→

α

π

∫ ∞
s0

ds ρ(s)
1

q2 − s+ i ε
, (2)

where s0 is the threshold of pair production of the parti-
cle in the vacuum polarization loop. For electronic vacuum
polarization, s0 = 4m2

e, where me is the mass of the elec-
tron, and the spectral function reads (see e.g. Ref. [5])

ρ(s) =
1

3 s

√
1−

4m2
e

s

(
1 +

2m2
e

s

)
.
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Fig. 1. Feynman diagram for the energy correction due to
electronic vacuum polarization, which has a big effect in heavy
particle–antiparticle systems (the diagram is for heavy fermio-
nium).

With the substitution v2 = 1 − 4m2
e/s the one-loop vac-

uum polarization integral can be cast into the form [6]

1

q2 + i ε
→

α

π

∫ 1

0

dv
v2(1− v2/3)

1− v2

1

q2 − λ2 + i ε
,

where

λ ≡ λ(v) =
2me√
1− v2

.

In non-relativistic approximation, we can restrict our-
selves to purely space-like momentum transfer. The re-
sulting correction to the Coulomb potential, which is
caused by a momentum transfer with q0 = 0, (we have
V (k) = −(4 πZ α)/k2), can be Fourier-transformed into
coordinate space and results in the Uehling potential,

VU (r) =
α

π

∫ 1

0

dv
v2(1− v2/3)

1− v2

[
−Z α

r

]
exp (−λ r) .

(3)

In heavy fermionium and pionium, the charge Z of the
particles is equal to one, and we will assume that Z is
equal to one or small (less than 20) in the sequel. From
equation (3) it follows that in leading approximation the
correction to the energy is spin–independent. It is rep-
resented diagrammatically in Figure 1. We evaluate the
energy shift given by the matrix element

∆E = 〈ψ|VU |ψ〉 =
α

π
CE Eψ , (4)

where CE is a dimensionless coefficient and

Eψ = −
(Z α)2 mR

2n2
(5)

is the Schrödinger binding energy. The coefficients CE are
all positive, which is consistent with the attractive nature
of the vacuum polarization correction to the Coulomb po-
tential. It is interesting to note that according to equation
(4), the energy shift due to vacuum polarization, which
enters at relative order α/π, has a greater effect than for
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example, any relativistic correction of order (Zα)2 and
higher. The evaluation of the matrix element in equation
(4) proceeds as follows. We perform all calculations in co-
ordinate space. Angular integration is trivial, and the ra-
dial integration can be performed using standard integrals.
For the remaining integration over the spectral function of
vacuum polarization, the substitution v → sinϕ proves to
be useful. The remaining integrals can be found in refer-
ence [7]. Identification of the (state–dependent) parameter

κn =
κ

n
=
Z αmR

me n
(6)

allows to rewrite the result in compact form. It is of in-
terest to evaluate κn for the systems considered in this
paper. We obtain,

κ(µ+µ−) = 0.754, κ(π+π−) = 0.997

and κ(τ+τ−) = 12.7 . (7)

In this article, we will defer the discussion of excited states
to the Appendices. Here, we will implicitly assume that
results are conferred for the 1S ground state and use the
fact that κ = κ1. We obtain the analytical expression,

CE(1S) = π

(
4

3κ3
+

1

κ

)
−

(
8

3κ2
+

22

9

)
+

2
(
2κ4 − κ2 − 4

)
3κ3

arccosκ
√

1− κ2
, (8)

where CE is implicitly defined in equation (4). The an-
alytical continuation of the expression in equation (8) is
given by

arccosκ
√

1− κ2
=

ln
(
κ+
√
κ2 − 1

)
√
κ2 − 1

for κ > 1 .

The result in equation (8) has been obtained earlier by
Pustovalov [8] in closed form. We confirm the result in ref-
erence [8] and additionally analyze the asymptotical form
of the energy correction here. It should be pointed out that
the analysis of the energy correction serves as a prelimi-
nary step towards the treatment of the hyperfine structure
correction and the wave function correction. From equa-
tion (8), we obtain the following asymptotics in the limit
of a small atomic radius,

CE(1S) ∼
4

3
ln (2 κ)−

22

9
for κ→∞ . (9)

The limit of small atomic radius corresponds to a large
mass of the constituent particle in the particle–antiparticle
systems as compared to the electron mass, not the rel-
ativistic limit of high Z (cf. Eq. (6)). Z must be kept
small (less than 20) to insure the non–relativistic nature
of the system. This limit of small atomic radius (large
mass ratio) is realized to a certain extent in the hypothet-
ical tauonium system (cf. Eq. (7)) and in muonic atoms
with moderate nuclear charge number Z. E.g., we obtain
for the 1S state in tauonium,

CE(1S, τ+τ−) ' 1.87

(from the asymptotic form, Eq. (9))

Table 1. CE coefficients for the energy shifts in exotic atoms
are tabulated for dimuonium, tauonium and pionium.

CE dimuonium pionium tauonium

1S 0.15 0.22 2.10

2S 0.071 0.10 1.05

2P 0.0017 0.0041 0.63

and

CE(1S, τ+τ−) = 2.10

(from the exact expression, Eq. (8))

within roughly 10% agreement. For the limit κ → 0 we
obtain

CE(1S) ∼
8κ2

15
for κ→ 0 . (10)

Equation (10) confirms the contribution of order
(α/π) (Z α)4 to the Lamb shift in electronic systems in-
duced by vacuum polarization. Results for the energy cor-
rection for 1S, 2S and 2P states are given in Appendix A
and summarized in Table 1.

The leading logarithmic coefficient in equation (9) can
be obtained with the effective charge approach, which is
discussed in more detail in [9]. In leading approximation,
one may replace the electromagnetic coupling upon inser-
tion of one electronic vacuum polarization loop by

coupling→ coupling×

[
1 +

α

3 π
ln

(
q2

m2
e

)]
for q2 →∞ (in logarithmic approximation) (11)

where q2 is a typical photon four–momentum for the
correction under consideration. The atomic momentum
qatom = Z αmR is characteristic for a particle bound in
a Coulomb potential. Because the Schrödinger energy is
proportional to (Z α)2 (see Eq. (5)), the effective charge
approach according to equation (11) calls for a replace-
ment

(Z α)2 → (Z α)2 ×

[
1 + 2

α

3 π
ln

{(
Z αmR

me

)2
}]

' (Z α)2 ×

[
1 +

4α

3 π
lnκ

]
for κ→∞ (12)

in agreement with equations (9, 28, 31).

3 Transverse hyperfine structure correction

One of the terms in the Breit Hamiltonian which generate
the hyperfine structure originates from the exchange of a
transverse photon. This term for S states is proportional
to (S1 · S2)∇2V (r). S1 and S2 are the spin operators of
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Fig. 2. Feynman diagram for the vacuum polarization cor-
rection to the transverse photon in heavy fermionium. This
process contributes to the hyperfine structure. The correction
is referred to as the transverse hyperfine structure correction
in the text.

Table 2. CT coefficients for the transverse photon–vacuum
polarization correction to the hyperfine splitting in heavy
fermionium.

CT dimuonium tauonium

1S 0.60 2.27

2S 0.62 2.31

the two particles, and V (r) = −Z α/r is the binding po-
tential. In the absence of virtual annihilation processes,
this term generates the hyperfine splitting in lowest or-
der (given by the Fermi energy). The correction induced
by a vacuum polarization insertion in the transverse pho-
ton is proportional to (S1 · S2)∇2VU (r) where VU is the
Uehling potential (Eq. (3)). For a compact presentation
of the result, it customary to define

∆EF =
α

π
CT E

(T )
F , (13)

where E
(T )
F is the portion of the Fermi energy originally

caused by the transverse photon exchange diagram (see
Fig. 2). For dimuonium and positronium, virtual annihi-
lation also contributes to EF . The portion of EF caused

by transverse photon exchange is E
(T )
F = (4/7)EF . By

contrast, for pionium, there is no hyperfine splitting due
to the spin–0 character. The evaluation of the correction
in equation (13) can be done analytically. It is carried
out in momentum space, where the Laplacian operator
assumes a simple form. Angular integration is trivial, and
the momentum space integral can be evaluated by joining
denominators with suitable (Feynman) parameters. For
the final integration over the spectral function of vacuum
polarization, the same substitution as for the energy cor-
rection proves to be useful. The result is given here in
terms of the dimensionless constant CT ,

CT (1S) = π

(
−

1

3κ3

)
+

6 + κ2

9κ2

+
2− κ2 + 2κ4

3κ3

arccosκ
√

1− κ2
· (14)

The result for the hyperfine structure correction for the
2S state is presented in Appendix B and summarized for
the atomic systems of interest in Table 2. The asymptotic
forms of the correction are

CT (1S) ∼
2

3
ln (2 κ) +

1

9
for κ→∞ (15)

and

CT (1S) ∼
3 π κ

8
for κ→ 0 . (16)

The leading logarithmic coefficient in equation (15) can
be obtained easily within the effective charge approach by
considering the modification of the binding factor Z α in
the Uehling potential (only one factor of Z α contributes in
this case). The effective charge approach therefore yields

(Z α)→ (Z α)×

[
1 +

α

3 π
ln

{(
Z αmR

me

)2
}]

' (Z α) ×

[
1 +

2α

3 π
lnκ

]
for κ→∞ (17)

in agreement with equation (15). For the 2S state, we con-
sistently find the same logarithmic coefficient as for 1S
(see Eq. (34)). Results obtained by evaluation of equation
(14) are in excellent agreement with a numerical calcu-
lation of Sternheim [10] for various muonic atoms with
nuclear charges Z = 1 (κ ≈ 1.4) to Z = 9 (κ ≈ 13).
For muonic atoms with Z in the range of 4 ≤ Z ≤ 9,
the asymptotic form equation (15) reproduces the exact
results obtained from equation (14) to within 1%. The
κ–values for these atoms approximately range from 6 to
13.

4 Wave function correction

The diagram which induces the wave function correction
is depicted in Figure 3 for heavy fermionium (dimuonium
or tauonium). The correction enters at the level of α/π.
We can write the wave function correction as

∆ψnS(0)

ψnS(0)
= −
〈ψnS|δ(r)G(Eψ)VU |ψnS〉

〈ψnS|δ(r)|ψnS〉
, (18)

where G = 1/(H −E)′ denotes the reduced Green’s func-
tion (the reference state is excluded), and VU denotes the
Uehling potential. Angular integration is trivial, and the
radial integration can be performed using the explicit rep-
resentation of the reduced Schrödinger–Coulomb Green’s
function G(r, r′ = 0;Ens) given in reference [12,13]. The
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Fig. 3. The wave function correction is represented here by
its effect on the decay rate of heavy fermionium into electrons.
In this case, the correction is mediated by a vertex correction
to the incoming annihilation vertex, with a vacuum polariza-
tion insertion in the virtual photon. Double lines denote bound
propagators. As it is further explained in the text, the meaning
of the wave function correction is rather general.

last step is the integration over the spectral function of
vacuum polarization. It is performed with the same sub-
stitution v → sinϕ as for the other corrections considered
in this paper. For a more compact presentation of the re-
sult, it is customary to define

∆ψ(0) =
α

π
Cψ ψ(0) , (19)

where Cψ is a dimensionless coefficient. We obtain for the
1S state,

Cψ(1S) = π
κ2 − 2

4κ3
+

6− 8κ2 + 5κ4

6κ2 (1− κ2)

+
2− 4κ2 + 3κ4 − 2κ6

2κ3 (1− κ2)

arccos(κ)
√

1− κ2
+ J(κ) .

(20)

The integral J(κ) is given by

J(κ) =

∫ 1

0

dy
y
√

1− y2 (2 + y2)

3

κ2

(1 + y κ)2

× ln

(
1 + y κ

y κ

)
. (21)

J(κ) can be determined analytically, but the result is
rather lengthy and contains derivatives of generalized hy-
pergeometric 3F2–functions with respect to parameters.
We prefer not to indicate the analytical result here. The
most compact representation for J(κ) is probably given
by equation (21). One can nevertheless extract useful in-
formation on J(κ) from equation (21). For κ → ∞, the
integrand of J(κ) tends to zero, but this convergence is
not uniform in the range [0, 1]. The limit is

lim
κ→∞

J(κ) =
π2

9
−

2

3
·

We therefore obtain the asymptotic behaviour for κ→∞
of the wave function correction as

Cψ(1S) ∼ ln (2 κ)−
3

2
+
π2

9
for κ→∞ (22)

Table 3. Cψ coefficients for the wave function correction in-
duced by the Uehling potential in a number of exotic atomic
systems.

Cψ dimuonium pionium tauonium

1S 0.53 0.68 2.84

2S 0.46 0.57 2.15

and

Cψ(1S) ∼
3 π κ

16
for κ→ 0 . (23)

The coefficient of the logarithm in equation (22) can be
understood from the effective charge approach by consid-
ering the unperturbed value of the wave function at the
origin, which is proportional to (Z αmR)3/2. The effective
charge prescription equation (11) then yields

(Z α)3/2 → (Z α)3/2 ×

[
1 +

3

2

α

3 π
ln

{(
Z αmR

me

)2
}]

' (Z α)×
[
1 +

α

π
lnκ
]

for κ→∞

(24)

in agreement with equation (22). The result for the 2S
state is given in Appendix C. For dimuonium, the asymp-
totic form of the correction (Eqs. (22,37)) cannot be ap-
plied, because of the smallness of κ (Eq. (7)). For tauo-
nium, however, the asymptotic form of the correction pro-
vides a result correct to the level of 5 per mille. We have
from the asymptotic expression

Cψ(1S, τ+τ−) ' 2.83
α

π
(from the asymptotic form, Eq. (22)) (25)

in good agreement with the full result

Cψ(1S, τ+τ−) = 2.84
α

π
(from the exact expression, Eq. (20)) . (26)

In addition, the asymptotic given in equation (22) re-
produces very well the exact results from equation (20)
for muonic atoms with moderate nuclear charge numbers
Z ≥ 4. This Z–range corresponds approximately to κ ≥ 6.

The difference between the asymptotic and the exact
result for Z ≥ 4 in muonic atoms is on the level of 1%.
The results for the wave function correction are presented
in Table 3. The numerical value for pionium is

Cψ(1S, π+π−) = 0.68
α

π
(from Eq. (20)) .

For pionium, the wave function correction to the best of
our knowledge has not been indicated in the literature.

Our results in equations (20, 36) are in excellent agree-
ment with the numerical treatment of the problem in ref-
erence [10]. They are, however, in disagreement with ref-
erence [11]. In reference [11], the wave function correction
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Table 4. Large κ asymptotics for all corrections considered
in this paper.

κ→∞ 1S 2S

CE
4

3
ln (2κ)−

22

9

4

3
ln (κ) −

28

9

CT
2

3
ln (2κ) +

1

9

2

3
ln (κ) +

11

18

Cψ ln (2κ)−
3

2
+
π2

9
ln (κ)−

8

3
+

2π2

9

is analyzed for dimuonium and tauonium. Results are ob-
tained within some approximations which are valid only
in the limit of small κ. A part of these approximations
consists in the use of the free Green’s function instead of
the bound propagator. This is valid in the limit of small
κ. Consequently, the value conferred in reference [11] for
muonic vacuum polarization in tauonium (small κ param-
eter) is in agreement with our result. The value of κ in this
case is αmτ/(2mµ) = 0.06. In addition, the asymptotics
in equations (23, 38) for κ → 0 are in agreement with
those found in reference [11] for the limit of small κ. For
the electronic vacuum polarization in tauonium, however,
the κ parameter is large (κ = 12.7, cf. Eq. (7)). Therefore,
we obtain a substantial disagreement between our result
and the value obtained in reference [11]. In reference [11]
a result of Cψ(1S, τ+τ−) = 4.57 is reported for the 1S
state in tauonium in contradiction to our result in equa-
tion (26).

5 Conclusion

We obtained analytical results for the energy correction,
the transverse hyperfine structure correction and the wave
function correction in exotic atoms. Results are given in
equations (8, 14, 20, 27, 30, 33, 36), and in the Tables 1,
2 and 3. We analyzed the asymptotic behaviour of the
corrections and derived leading logarithms in the effective
charge approach. The asymptotics in the limit of a small
atomic radius (large mass ratio) (κ→∞, cf. Eq. (6)) are
given in equations (9, 15, 22, 28, 34, 37) and are sum-
marized in Table 4. The state–independent logarithmic
coefficients are obtained in equations (12, 17, 24) within
the effective charge approach. This derivation illustrates
their physical origin (running coupling constant).

We verified numerical results obtained by Sternheim
[10] for a number of low-Z muonic atoms and by Pachucki
(for muonic hydrogen, [14]) within our analytical treat-
ment. We obtained for the wave function correction to
the decay rate of the π+π−–atom ∆Γ (1S)/Γ (0)(1S) =
1.36 (α/π) and ∆Γ (2S)/Γ (0)(2S) = 1.14 (α/π) for pio-
nium (cf. Eqs. (1, 20, 36)). Numerical values are also pro-
vided for the effect in heavy fermionium (Tab. 3). The
asymptotic results derived for the limit of a small atomic
radius (large mass ratio) are in fair agreement with a com-
plete evaluation for the heaviest of the systems considered,

the hypothetical tauonium particle (cf. Eqs. (25) and (26))
and for muonic atoms with moderate nuclear charge num-
bers Z (4 ≤ Z ≤ 9), which are considered in the work of
Sternheim [10].

U. J. would like to thank Deutscher Akademischer Austausch-
dienst (DAAD) and Deutsche Forschungsgemeinschaft for con-
tinued support (DFG contract no. SO333/1–2). The work of
S.K. and V.I. has been supported in part by the Russian State
program “Fundamental Metrology”. S.K. and V.I. would also
like to thank the Max–Planck–Institut für Physik komplexer
Systeme for continued support and for hospitality extended at
the Technical University of Dresden.

Appendix A: Energy correction for 2S and 2P

In this Appendix we consider the energy shift of the the
2S and 2P states due to the Uehling potential. We obtain
the following results,

CE(2S) = π
2
(
14 + 3κ2

2

)
3κ3

2

+
−168 + 272κ2

2 − 49κ4
2 − 28κ6

2

9κ2
2 (κ2

2 − 1)2

+
−56 + 128κ2

2 − 75κ4
2 − 10κ6

2 + 4κ8
2

3κ3
2 (κ2

2 − 1)2

arccosκ2√
1− κ2

2

(27)

where κn is defined in equation (6). We find for the asymp-
totics

CE(2S) ∼
4

3
ln (2 κ2)−

28

9
for κ2 →∞ (28)

and

CE(2S) ∼
α

π

16κ2
2

15
for κ2 → 0 . (29)

For the 2P state the following results are obtained,

CE(2P ) = π
2
(
10 + 3κ2

2

)
3κ3

2

+
−120 + 184κ2

2 − 23κ4
2 − 32κ6

2

9κ2
2 (κ2

2 − 1)2

+
−40 + 88κ2

2 − 45κ4
2 − 10κ6

2 + 4κ8
2

3κ3
2 (κ2

2 − 1)2

arccosκ2√
1− κ2

2

(30)

with the asymptotics

CE(2P ) ∼
4

3
ln (2κ2)−

32

9
for κ2 →∞ (31)

and

CE(2P ) ∼
α

π

8κ4
2

35
for κ2 → 0 . (32)

From these expressions we deduce the asymptotic form

L = ∆E(2S − 2P ) ∼ −
1

18

α

π
(Z α)2 mR for κ→∞

for the Lamb shift L.
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Appendix B: Transverse hyperfine structure
correction for the 2S state

For the 2S state we obtain

CT (2S) = π

(
−

1

3κ3
2

)
+

24− 44κ2
2 − 29κ4

2 + 22κ6
2

36κ2
2 (κ2

2 − 1)2

+
8− 20κ2

2 + 33κ4
2 − 20κ6

2 + 8κ8
2

12κ3
2 (1− κ2

2)2

arccosκ2√
1− κ2

2

(33)

as result for the hyperfine structure correction. The
asymptotic forms are

CT (2S) ∼
2

3
ln (2κ2) +

11

18
for κ2 →∞ (34)

and

CT (2S) ∼
α

π

3 π κ2

4
for κ→ 0 . (35)

Appendix C: Wave function correction for 2S

For the 2S state we obtain the following result for the
wave function correction,

Cψ(2S) = π
3κ2

2 − 26

6κ3
2

+
312− 920κ2

2 + 894κ4
2 − 195κ6

2 + 44κ8
2

36κ2
2 (1− κ2

2)3

+
104− 376κ2

2 + 506κ4
2 − 309κ6

2 + 42κ8
2 − 12κ10

2

12κ3
2 (1− κ2

2)3

×
arccos(κ2)√

1− κ2
2

+K(κ2) ,

(36)

where the integral K is given by

K(κ2) =

∫ 1

0

dy
2 y
√

1− y2 (2 + y2)

3

κ2
2 (2 + y2 κ2

2)

(1 + y κ2)4

× ln

(
1 + y κ2

y κ2

)
.

K can be obtained by acting of a suitable differential op-
erator on J (Eq. (21)). We easily find the limit

lim
κ→∞

K(κ2) =
2 π2

9
−

13

9
.

The asymptotic behaviour of the correction for the 2S
state for large κ is

Cψ(2S) ∼ ln (2 κ2)−
8

3
+

2 π2

9
for κ→∞ , (37)

and for small κ it results

Cψ(2S) ∼
3 π κ2

8
=

3 π κ

16
for κ→ 0 . (38)
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